Ramsey Degrees of Finite Ultrametric Spaces, Ultrametric Urysohn Spaces and Dynamics of Their Isometry Groups

نویسنده

  • NGUYEN VAN
چکیده

We study Ramsey-theoretic properties of several natural classes of finite ultrametric spaces, describe the corresponding Urysohn spaces and compute a dynamical invariant attached to their isometry groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramsey degrees of finite ultrametric spaces, ultrametric Urysohn spaces and dynamics of their isometry groups

We study Ramsey-theoretic properties of several natural classes of finite ultrametric spaces, describe the corresponding Urysohn spaces and compute a dynamical invariant attached to their isometry groups.

متن کامل

Polish ultrametric Urysohn spaces and their isometry groups

Article history: Received 15 July 2009 Received in revised form 2 December 2010 Accepted 5 December 2010

متن کامل

Vector ultrametric spaces and a fixed point theorem for correspondences

In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.

متن کامل

Generalized hyperstability of the cubic functional equation in ultrametric spaces

‎In this paper‎, ‎we present the‎ generalized hyperstability results of cubic functional equation in‎ ‎ultrametric Banach spaces using the fixed point method‎.

متن کامل

Trees, Ultrametrics, and Noncommutative Geometry

Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes’s example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008